Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 200

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Beam separation experiment with prototype non-destructive electrostatic septum and study for device improvement

Nagayama, Shota; Harada, Hiroyuki; Shimogawa, Tetsushi*; Sato, Atsushi*; Yamada, Ippei; Chimura, Motoki; Kojima, Kunihiro; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.526 - 530, 2023/11

We have been developing "Non-destructive electrostatic septum" for a slow extraction. This septum has multiple electrodes placed around the region without the beam hitting and separate the beam by its electric field. To evaluate its electric field, we have built a prototype septum and a test machine, which consists of an electron gun and monitors. This test machine can measure the electric field indirectly by using a narrow electron beam. The experiment results of prototype septum is good agreement with the calculation one. However, this electric field distribution is not enough to separate the beam. A step function-like electric field distribution is ideal for the beam separation with minimal negative effect on the beam. We have studied to improve the electrode configuration to match the beam shape. In this paper, we present the result of the electric field measurements and the septum improvement. Additionally, we describe the future plan of this development.

Journal Articles

Study of non-destructive slow beam extraction method in particle accelerator

Nagayama, Shota; Harada, Hiroyuki; Shimogawa, Tetsushi*; Yamada, Ippei; Chimura, Motoki; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.503 - 507, 2023/01

Synchrotron accelerators realize physics experiments and radiation cancer treatment using the slow extraction technique, in which beams are stored in the ring and gradually delivered. We have devised and are currently developing a "non-destructive electrostatic septum" based on a new method, which in principle cannot be solved by conventional methods and is a cause of equipment failure and output limitation. It is ideal to generate a force distribution similar to a staircase function with discontinuous gaps at the boundary. In this presentation, we will show the calculation method for optimizing the electrode and wire configuration to generate a Lorentz force with a distribution similar to a staircase function in vacuum, and the calculation results of the beam breakup due to the generated Lorentz force. The compact proof-of-principle machine developed for the ongoing demonstration of this method will also be introduced.

Journal Articles

Development of combined-function multipole permanent magnet for high-intensity beam transportation

Fuwa, Yasuhiro; Takayanagi, Tomohiro; Iwashita, Yoshihisa*

IEEE Transactions on Applied Superconductivity, 32(6), p.4006705_1 - 4006705_5, 2022/09

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

Space charge compensation technique using multipole magnetic field components has been proposed to transport high intensity beam in the J-PARC linac. In order to realize this compensation technique, a compact size permanent hybrid multi-pole magnet would be suitable. A magnet system for the simultaneous production of quadrupole and adjustable octupole components using permanent magnet materials and have manufactured a first model of the magnet systems.

Journal Articles

Design of beam focusing system with permanent magnet for J-PARC LINAC MEBT1

Fuwa, Yasuhiro; Moriya, Katsuhiro; Takayanagi, Tomohiro

Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.364 - 367, 2022/09

MEBT1 (Medium Energy Beam Transport 1) of the J-PARC LINAC is a 3 MeV beam transport system located between the RFQ (Radio Frequency Quadrupole) and DTL (Drift Tube Linac). In the MEBT1, the beam-optical matching for injection into DLT and chopping for injection into acceleration phase of 3 GeV synchrotron, located downstream to the LINAC, are performed. The characteristics of MEBT1 are an important factor in determining the beam quality in the J-PARC accelerator facility. To achieve beam power of 1 MW and beyond, improving the stability and reliability of MEBT1 is an important development issue. The application of permanent magnets to the beam focusing system to the MEBT1 is under consideration to achieve improved stability and reliability. In this presentation, we report the design of focusing magnets using permanent magnet material and the results of the lattice study of MEBT1 with permanent magnets.

Journal Articles

Beam emittance growth due to the strong space-charge field at low energy of a high-intensity ion linac and its mitigation using an octupole magnetic field

Chimura, Motoki; Harada, Hiroyuki; Kinsho, Michikazu

Progress of Theoretical and Experimental Physics (Internet), 2022(6), p.063G01_1 - 063G01_26, 2022/06

 Times Cited Count:1 Percentile:28(Physics, Multidisciplinary)

In the low-energy region of a high-intensity ion linac, a strong space-charge field causes a rapid beam emittance growth over a short distance of only few meters. The beam emittance growth leads to a beam loss and the machine activation raising a serious issue for regular maintenance of the accelerator component and beam power ramp up. In this work, we studied the mechanism of beam emittance growth due to the space-charge field based on three-dimensional particle-tracking simulation and theoretical considerations. Numerical simulations done for the high-intensity linac at J-PARC shows that the nonlinear terms in the space-charge field directly cause a beam emittance growth and beam halo formation. Then, we also propose a method to mitigate the beam emittance growth by using an octupole magnetic field, which arises as one of the nonlinear terms in the space-charge field. By applying this method in the simulation, we have succeeded mitigating the beam emittance growth.

Journal Articles

Analysis of machine protection system events in the J-PARC Linac/RCS

Hayashi, Naoki; Hatakeyama, Shuichiro; Fukuta, Shimpei*

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.679 - 682, 2021/10

In order to achieve a high availability in a user facility accelerator complex, it is necessary to understand in detail not only the simple failure cause of the magnet or the acceleration cavity power supply, but also complex interlocked events. At J-PARC, not only the primary interlock information but also the data recorded by the beam diagnostic system before the interlocked event is used to carefully reconstruct the event and clarify the cause more accurately. This time, we proceeded with the analysis based on more detailed waveform of the RCS Beam Loss Monitor and the events during simultaneous operation of MLF and MR. We present various events of the beam destination switching problem, the influence of the ion source discharged, and the events related to the RCS extraction kicker.

Journal Articles

Simulation study of heavy ion acceleration in J-PARC

Harada, Hiroyuki; Saha, P. K.; Kinsho, Michikazu

JPS Conference Proceedings (Internet), 33, p.011028_1 - 011028_6, 2021/03

Recently, humankind had big discovery about neutron star, which is great big nuclear in the space. They are discovery of neutron star with twice mass of solar in 2010 and detection of gravity wave when two neutron stars incorporate in 2017. In order to understand the high dense matter like the neutron star, project of experimental researches by using accelerated heavy ion beams are planed in the world. The J-PARC facility consists of three accelerators, which are 400 MeV linac, 3 GeV rapid cycling synchrotron and Main Ring synchrotron. The accelerated MW class high intensity proton beams are used in many experiments. We have simulation study of the heavy ion beam in J-PARC to fully utilize high intensity ability of J-PARC. We propose the accelerator scheme of the beam in J-PARC and the intensity will reach to the world record. In my talk, I will introduce the accelerator scheme for the high-intensity heavy ion beam in J-PARC.

Journal Articles

Development of laser system for laser stripping injection

Harada, Hiroyuki; Saha, P. K.; Yoneda, Hitoki*; Michine, Yurina*; Fuchi, Aoi*; Sato, Atsushi*; Kinsho, Michikazu

JPS Conference Proceedings (Internet), 33, p.011026_1 - 011026_6, 2021/03

The charge-exchange multi-turn injection by using a carbon stripper foil is adopted in high-intensity proton ring accelerators worldwide. It is a beneficial method to compress the pulsed proton beam with high intensity but there are serious issues for high intensity. First issue is a short lifetime of the foil by deformation or breaking itself. Another issue is high radiation dose corresponding to the scattered particles on the foil. Therefore, a non-destructive stripping injection method is required for higher intensity proton beam. We newly propose a non-destructive method of H$$^{-}$$ stripping by using only laser. The new method is called "laser stripping injection". To establish our method, we are preparing for a POP (Proof-of-Principle) experiment of 400 MeV H- stripping to proton at J-PARC. In our presentation we will present the current status of laser system development for laser stripping injection at J-PARC.

Journal Articles

New method for high resolution analysis of betatron tune in a rapid cycling synchrotron or a booster ring

Harada, Hiroyuki; Hayashi, Naoki

JPS Conference Proceedings (Internet), 33, p.011027_1 - 011027_6, 2021/03

The transverse betatron tune is one of the most important key parameters in a ring accelerator because emittance growth and beam loss occur directly in case of crossing a betatron resonance. Especially, the tune must be required a controll with high accuracy in high intensity proton accelerator from the view point of space charge force and the beam instability. In general measurement method, the betatron tune is measured by analyzing the detected beam oscillation on Fourier transform. However, the beam is quickly accelerated and the revolution frequency of the beam changes quickly in a rapid cycling synchrotron. So, the tune accuracy is not improved. A new method was developed for high resolution analysis of the tune and was evaluated in J-PARC accelerator. Tune accuracy was successfully improved from 0.013 to less than 0.001. Tune controll with high accuracy is base for high-intensity beam. In this paper, the new method is introduced and the measured result in J-PARC is report.

Journal Articles

1.2-MW-equivalent high-intensity beam tests in J-PARC RCS

Hotchi, Hideaki; Harada, Hiroyuki; Hayashi, Naoki; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yamamoto, Masanobu; et al.

JPS Conference Proceedings (Internet), 33, p.011018_1 - 011018_6, 2021/03

no abstracts in English

Journal Articles

Analysis of J-HBC stripper foil for the J-PARC RCS

Yoshimoto, Masahiro; Nakanoya, Takamitsu; Yamazaki, Yoshio; Saha, P. K.; Kinsho, Michikazu; Yamamoto, Shunya*; Okazaki, Hiroyuki*; Taguchi, Tomitsugu*; Yamada, Naoto*; Yamagata, Ryohei*

JPS Conference Proceedings (Internet), 33, p.011019_1 - 011019_7, 2021/03

BB2019-1209.pdf:0.86MB

The multi-turn charge-exchange H$$^{-}$$ beam injection scheme with stripper foils is one of the key techniques to achieve a MW-class high power proton beam. The J-PARC RCS adopts Hybrid type Boron-doped Carbon (HBC) stripper foil, which was developed in KEK to improve the lifetime. Indeed, the RCS user operation confirmed that HBC foil has the great advantage of a longer lifetime against high beam irradiation. To examine characteristics of the HBC foils, various beam studies were performed, such as the stripping efficiency measurement and long-term observation with an H$$^{-}$$ beam in the J-PARC RCS, foil analysis using RBS, EDR and PIXE methods, and SEM and TEM observation after the ion beam irradiation in Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) on National Institutes for Quantum and Radiological Science and Technology (QST). Recently, the deposition apparatus for the HBC foils from the KEK Tsukuba-site was relocated to the JAEA Tokai-site, and we started fabrication of new HBC foil in 2017. (The new one fabricated in JAEA we call J-HBC foil.) And, we continue investigations in TIARA with the J-HBC foils. Furthermore, in-depth researches by changing the process parameters of the foil deposition are carried on. Recent results suggest that the amount of the boron doped in the foil is more important parameter than the ratio of the discharge amount of carbon from cathode and anode electrodes. In this presentation, we will report the details of recent analysis of the J-HBC foil.

Journal Articles

High intensity beam studies for the new MEBT1 design

Okabe, Kota; Liu, Y.*; Otani, Masashi*; Moriya, Katsuhiro; Shibata, Takanori*; Chimura, Motoki*; Hirano, Koichiro; Oguri, Hidetomo; Kinsho, Michikazu

JPS Conference Proceedings (Internet), 33, p.011011_1 - 011011_6, 2021/03

To realize more stable operation of the J-PARC accelerators, we have a re-design plan of an MEBT1 (Medium Energy Beam Transport). At the J-PARC Linac, the MEBT1 has transverse and longitudinal beam matching section for the DTLs. However there are some locally activated spots in DTL area at the current beam power level. To reduce beam loss during a beam acceleration at the DTLs is a most important task for a stable user operation. The first thing we should do is investigation a connection between beam quality in the MEBT1 and parameters of the upstream hardware. In this presentation, we will report a high intensity beam study results at the MEBT1.

Journal Articles

Topics from radiation safety design of J-PARC

Nakashima, Hiroshi

JAEA-Conf 2020-001, p.69 - 74, 2020/12

J-PARC (Japan Proton Accelerator Research Complex) is a high-energy proton accelerator complex of the world's highest beam power. Because of its very high beam power and its high energy as well as the large-scale accelerator complex, we encountered some very difficult problems on radiation safety design. Various examinations and countermeasures were considered in order to overcome the difficulty. This paper introduces some of them. In addition, some new knowledge obtained during 10 years after completion are described.

Journal Articles

Status of laser development for laser stripping experiment at J-PARC

Harada, Hiroyuki; Saha, P. K.; Yoneda, Hitoki*; Michine, Yurina*; Fuchi, Aoi*; Sato, Atsushi*; Shibata, Takanori*; Kinsho, Michikazu

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.441 - 445, 2020/09

The high-intensity proton accelerator adopts a charge exchange injection scheme, which injects with exchanging from negative Hydrogen ion to proton by using carbon foil. This scheme is destructive-type method by using the foil and can accumulate high intensity proton beam. However, the uncontrolled beam losses by scattering at the foil and the foil breaking by the beam collision are a key issue of high-intensity proton accelerator. In order to realize higher intensity, new injection scheme of non-destructive type is needed instead of the foil. We newly propose laser stripping injection scheme by using laser pulse. We plan proof of principle experiment at J-PARC and are developing the laser system. In my presentation, we introduce the overview of laser stripping injection scheme and report the status of laser development.

Journal Articles

Intensity dependence of the beam current monitors at J-PARC RCS

Hayashi, Naoki

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.478 - 481, 2020/09

Measurement of beam intensity or beam current is the one of the most important beam diagnostic in an accelerator. At J-PARC Rapid-Cycling Synchrotron (RCS), there are two kinds of beam intensity monitors and multiple Current Transformers (CT) with various bandwidth. The RCS is a high intensity proton accelerator and its designed beam power of 1 MW. The beam power delivered to users gradually increases in the recent year. Single pulse or short term with designed beam power has been also demonstrated. In addition, beyond 1-MW equivalent intensity has been attempted. Through the experience with achievement of the design goal and the operation beyond it, intensity dependence of beam current measurement has been summarized.

Journal Articles

Results of 1-MW operation in J-PARC 3 GeV rapid cycling synchrotron

Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Hatakeyama, Shuichiro; Hotchi, Hideaki; Yoshimoto, Masahiro; et al.

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.209 - 213, 2020/09

The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, just before the summer shutdown period, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. First trial was 1-hour continuous operation in July 2018, and second trial was 10-hours continuous in July 2019. In both cases, we achieved almost stable operation. Furthermore, in June 2020, we tried to operate continuously for over 40 hours. But in this case, some trouble occurred and the operation was frequently suspended. Through these continuous operation trials, we have identified issues for stable operation of 1 MW. In this presentation, we will report the results of 1-MW continuous operation and issues obtained from these results.

Journal Articles

Charge exchange method of H$$^{-}$$ beam by electron beam

Okabe, Kota

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.446 - 448, 2020/09

One of the important research themes for further enhancement of the proton accelerator is the advancement of the charge exchange injection method. At present, the charge exchange injection method in the high-intensity proton accelerator facility currently in operation mainly uses the charge exchange foil. However, this method has a problem in that activation of the around the charge exchange injection point due to beam scattering by the foil and neutrons generated from the foil. In order to solve this problem, new charge exchange injection methods such as laser charge exchange method are being researched in accelerator facilities around the world. In this research, we focus on the charge exchange method using electron beams and proceed with the basic experiments. In this presentation, we will report the progress of the charge exchange efficiency measurement of negative hydrogen ion beam using electron beam.

Journal Articles

Progress status in fabrication of HBC stripper foil for 3-GeV RCS at J-PARC in Tokai site

Yoshimoto, Masahiro; Yamazaki, Yoshio; Nakanoya, Takamitsu; Saha, P. K.; Kinsho, Michikazu

EPJ Web of Conferences, 229, p.01001_1 - 01001_7, 2020/02

In the 3-GeV Rapid Cycling Synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC), we adopted thick Hybrid type Boron-doped Carbon (HBC) stripper foil for the multi-turn H$$^{-}$$ charge-exchange injection. The HBC stripper foil developed at KEK has been successfully demonstrated to improve the foil lifetime significantly. Early manufacturing process of the stripper foil in the J-PARC had been carried out in following two steps: foil fabrication in KEK Tsukuba-site and foil preparation in JAEA Tokai-site. However, to proceed with the foil manufacturing in a same place efficiently, the carbon discharge arc-evaporation system for HBC stripper foil was removed from the Tsukuba-site and relocated in the Tokai-site. After reassembling of the carbon discharge arc-evaporation system, performance evaluation tests of new HBC foil which are produced at the JAEA Tokai site (J-HBC) are implemented at the TIARA facility of QST-Takasaki. As results of argon beam irradiation for lifetime evaluation, components analysis with RBS method, and impurity evaluation with micro-PIXE method, we can verify that the J-HBC foil performs pretty much equally to the original HBC foil. After the irradiation test by using 400MeV H$$^{-}$$ beam in the J-PARC RCS, user operation by using the J-HBC foil was successfully demonstrated for 10 days.

Journal Articles

Recent progress of the J-PARC RCS beam commissioning and operation; Efforts to realize a higher beam power beyond 1 MW

Hotchi, Hideaki; Harada, Hiroyuki; Hayashi, Naoki; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yamamoto, Masanobu; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.574 - 578, 2019/07

no abstracts in English

200 (Records 1-20 displayed on this page)